

PRAKTISCHE PROBLEME DER KERNRESONANZSPEKTROSKOPIE 2023

RF-Pulse für verschiedenste Anwendungen

Dr. Daniel Mathieu Bruker BioSpin

Topics

01 What are shaped and adiabatic pulses?

02 Using shaped pulses

What are the applications of shaped pulses?

How can automation be used in creating shaped pulses?

The short way – matched length rectangular pulses

Using rectangular pulses as bandselective pulses:

The short way – matched length rectangular pulses

Using rectangular pulses as bandselective pulses:

• E.g. 15 kHz separation: $B_1 = \frac{\Delta \omega}{\sqrt{3}} = 8660$ $B_1 = \frac{1}{4\tau_p} \Leftrightarrow \tau_p = \frac{1}{4B_1} = 58\mu s$

Why not just hard pulses?

Shaped pulses

SHAPED PULSES

Definitions

NMR was developed simultaneously by Edward Purcell and Felix Bloch in 1946. The experimental method and theoretical interpretation they developed is continuous-wave NMR. Pulsed NMR technique was introduced in 1950 by Erwin Hahn.

Historically

• 'Shaped pulses' or 'selective pulses' were used for the excitation of a limited bandwidth (e.g. a single multiplet)

Today

- 'Shaped pulses' are not necessarily selective pulses
- 'Shaped pulses' are pulses with a customized bandwidth and behavior by utilizing amplitude, phase and/or frequency modulation

Bandwidth considerations:

- selective excitation / inversion / refocusing of a 'small' bandwidth:
 e.g. refocusing Gaussian pulse in selcogp, selmlgp, selnogp, etc.
- selective excitation / inversion / refocusing of a 'larger' bandwidth:
 e.g. SNOB, BURP pulses for band selective excitation in HSQC, selective decoupling in bio-NMR experiments
- wideband inversion at lowest power level possible (e.g. CHIRP and WURST decoupling pulses).
 The adiabatic condition met over a large frequency range by making efficient use of available power.

Definitions

Soft Pulse: Soft pulse vs. hard pulse

- The typical hard pulse is designed to yield some flip angle over a large bandwidth.
- A soft pulse can be tailored to provide the same flip angle, but over a much smaller bandwidth, therefore selective and using less power.

BRUKER

Shaped Pulse: RF pulse modulation

• The RF pulse is modulated over the duration of the pulse

Amplitude

Gaussian shape, 50 points

Shape is defined by amplitude value vs. point. The shape is then implemented by defining the duration of the pulse.

Different shapes can be utilized to attain specific excitation profiles.

Shaped Pulse: Phase Modulation

- In addition to amplitude, the phase of a pulse can also be varied during its duration.
- Phase modulation is used to attain frequency specific goals such as frequency offset or multiple frequency irradiation.

Properties of shaped pulses: bandwidth factor

BRUKER

Pulse bandwidth is the range at which the excitation (inversion, refocusing) drops to 70.8% of the max (a reduction of 3 dB)

For a rectangular 90-degree pulse of 10000 us, the magnitude of the transverse magnetization drops to 70.8% at +/- 55.8 Hz, so the bandwidth is 111.6 Hz

P = BWFAC / $\Delta \omega$:

 $\mathsf{P}-\mathsf{pulse}$ duration and bandwidth – $\Delta\omega$ are inversely proportional. Coefficient is called bandwidth factor.

A pulse of a given duration with a larger BWFAC excites larger bandwidth than a pulse with a smaller BWFAC.

Shape	BWFAC	SW, Hz	P, us	P, us	SW, Hz
Square 90	1.116	1000	1116	1000	1116
Square 180	0.39	1000	390	1000	390
Gaus1.1000	2.122	1000	2122	1000	2122
Sinc1.1000	1.606	1000	1606	1000	1606

Offset effects: phase

Desired offset effects – chemical shift (and J-coupling) evolution

- Some pulses allow for evolution of J coupling and/or chemical shift during a large portion of the pulse length
 - Magnetization transfer is achieved already during the pulse, allowing for shortened transfer delays

Composite pulses: 90x180y90x (90x240y90x, ...)

Three main problems that lead to degraded sensitivity and potentially introduces artefacts:

a) limited excitation, inversion/refocusing profile;

b) phase errors

c) B_1 inhomogeneity / pulse miscalibration

Composite pulses – series of hard pulses with different phases concatenated one after another.

180_x pulse Resonance offset 0.2-0.6 γB₁

 $90_x 180_y 90_x$ pulse B_1 inhomogeneity

 $90_x 180_y 90_x$ pulse Resonance offset 0.2-0.6 γB_1

Compensation against B1 inhomogeneity, resonance offset

Properties of shaped pulses: integral power and integral factor

Integral factor is the integral ratio of a shaped pulse and a 100% square pulse of the same length

Integral factor, together with the pulse duration, defines pulse power level compared to a 100% square pulse.

$$\begin{split} \Delta dB &= 20 * \log_{10} \left(\frac{P_2^{sq}}{P_1^{sq}} \right) = 20 * \log_{10} \left(\frac{P_2^{sh} * INTEGFAC}{P_1^{sq}} \right); \\ PLW_2 &= PLW_1 * \left(\frac{P_1^{sq}}{P_2^{sq}} \right)^2 = PLW_1 * \left(\frac{P_1^{sq}}{P_2^{sh} * INTEGFAC} \right)^2; \\ \gamma B_{1max} &= \frac{1}{4 * P_{90}^{sq}} = \frac{1}{4 * P_{90}^{sh} * INTEGFAC} \end{split}$$

Twice as long pulse requires 4 times lower power or +6.02 dB (for a given INTEGFAC)

Bandwidth factor, Integral and Excitation bandwidth comparision

Some examples and formulas

If you want to selectively excite a 25Hz bandwidth ...

Shape	BWFAC	P, us	INTEGFAC	γB _{1max} (Hz)	∆dB *
Square	1.116	44640	1	5.6	74.9
Gaus1.1000	2.122	84880	0.412	7.2	72.8
Sinc1.1000	1.606	64240	0.589	6.6	73.5
Eburp2.1000	4.95	198080	0.061	20.7	63.6
Q5.1000	6.18	247200	0.055	18.6	64.5

* to 8 us 90-degree pulse

Gaussian pulse cascade pulses (Q3/5, G3/4), BURP, SNOB and some other pulses are so-called top-hat excitation pulses.

They are used for selective uniform excitation/inversion of a defined spectral region with minimal distortions outside of the region.

Adiabatic pulses for inversion and refocusing

Adiabatic Pulses

- Radiofrequency (RF) pulse which utilizes a swept frequency in combination with varying amplitude, specifically utilizing slow passage of B₁ through resonance
- Adiabatic pulses are frequency swept broadband inversion or refocusing pulses. The adiabatic condition is satisfied if the rate of the frequency sweep keeps the magnetization over the bandwidth locked by the applied RF field.

Crp25.1.25 - trajectories of 10 magnetization vectors spaced 250 Hz apart

The definition of adiabatic condition requires that the magnetization vector M follows the trajectory of the effective radio frequency field vector B1_{eff}. With adiabatic pulses spins having different resonance frequencies are inverted at different times, unlike hard pulses where all spins are affected simultaneously.

Inversion profile and power levels for adiabatic pulses

- Crp25,1.25,25.4 Chirp pulse with 25 kHz sweep width, 1.25 ms duration, 25% sine smoothed, 4k points.
- Real inversion is ca. 70% of declared 18 kHz
- Power corresponds to 90° pulse of 62.7 us

RF pulse: phase and frequency relation

Rectangular pulse with constant phase during the pulse: "on resonance" with transmitter offset

Rectangular pulse with linear phase change: "off resonance" with respect to transmitter offset

Rectangular Pulse with quadratic phase change: "frequency sweep" from far off-resonance through resonance

 $f \ll f < f_0 > f >> f$

Adiabatic pulse

- B_1 is applied as a long continuous wave rather than a short pulse
- The frequency of B_1 is slowly ramped from below to above resonance
- M will follow B₁ to inversion
- The adiabatic condition is formally expressed by $|d\theta/dt| << \gamma |B_{eff}|$ where θ = the angle made by B_{eff} with the y'-z' plane
- Provided that the B_1 field is strong enough and applied slowly enough, the adiabatic condition, M will follow B_{eff} during the B_1 frequency sweep

MRIquestions.com © 2019 AD Elster, ELSTER LLC

Adiabatic pulses - advantages

- Wide inversion bandwidth
 - Typical examples are 13C HSQC, 19F CPMG
 - Adiabatic decoupling requires less power and gives wider decoupling range
 - Broad and flat inversion profiles which produces increased S/N at the edges of a spectrum
- Insensitive to B1 inhomogeneity
 - Increased signal-to-noise
 - Clean spectra right coherences are generated
- Insensitive to power missetings
 - Salty samples increased signal-to-noise

Adiabatic pulses - some useful rules of thumb

- The power for an adiabatic inversion or refocusing ¹³C pulse is approximately the same as that for a 25 us ¹³C high power 90° pulse.
- The nominal sweep width of the adiabatic pulse for inversion or refocusing (not decoupling) should be ~1.5 x SW
- The nominal sweep width of the adiabatic pulse for adiabatic decoupling should be ~1.25 x SW (decoupling field).
- The length of the adiabatic decoupling pulse should be < 1/(5*J).
- To minimize power requirements, the recommended Q (quality factor, $Q = \frac{\omega_{eff}}{|d\theta/dt|}$) for decoupling is 2 to 3 (instead of 5).

Adiabatic pulses - Limitations

- Regular adiabatic pulses produce a non linear phase shift.
- This can be overcome by either using pairwise adiabatic pulses or a single composite adiabatic pulse
- Composite Adiabatic pulses can run into the power limitations of a probe (e.g. on ¹⁵N)

Typical Adiabatic pulses

- Adiabatic inversion : Crp32, Crp48...
- Adiabatic refocusing : in XY plane with composite pulse Crp60comp.4 a composite 1:2:1 pulse Transverse magnetization during the pulse accumulates offset-dependent phase error. With 1:2:1 pulse, which is reminiscent of 90-180-90 composite pulse, the central component enables refocusing of the phase error originating from the first pulse by the last, third pulse.
- J-compensated Adiabatic Pulses Crp60_xfilt.2: sweep rate matches change J coupling at different chemical shifts for proteins and nucleic acids
- Adiabatic decoupling

Not exactly adiabatic - broadband inversion pulses (BIP)

Use of shaped pulses in a pulse sequence

Shaped pulses in pulse sequences

∧ Channel f1

SFO1 [MHz]	799.8097581		
01 [Hz, ppm]	3758.10		4.699
NUCI	1H	Edit	
Pl [µsec]	10.840		
p2 [µsec]	21.68		
Pl2 [µsec]	2000.000		
PLWO [W, dB]	0		1000.00
PLW1 [W, dB]	9.7724		-9.90
SPNAM 1	Sincl.1000		E
SPOAL1	0.500		
SPOFFS1 [Hz]	0		
SPW1 [W, -dBW]	0.0033111		24.80

		d16 pl0:f1				
Frequency of ch. 1		(p12:sp1 ph2:r):f1				
Frequency of ch. 1		4u				
Nucleus for channel 1		d12 pl1:f1				
F1 channel - 90 degree high power pulse		·				
F1 channel - 180 degree high power pulse						
F1 channel - 180 degree shaped pulse (Squa1						
OW	OW					
F1 channel - power level for pulse (default)						
File name for SP1						
Phase alignment of freq. offset in SP1 SP0/	AL1: Phase Ali	gnment				
Offset frequency for SP1	0 Begin	ning of pulse (flip-back)				
F1 channel - shaped pulse 180 degre	0.5 Cente	er of pulse (refocusing)				
	I.U END C	or puise (excitation)				
SPOF	FS: Frequenc Offset for	y Offset shaped pulse in relation to o1				

Prosol table

	Saved Observe and Saved Decouple Prosol Parameter Set for:																	
Probe: Z81999_0001 PA QX	(I 600S3 H-C/N/F-D-05	z	Select													Solvent:	generic	
Pulse Assign File: /opt/topspin	14.2.0.b.7/exp/stan/n	mr/list	ts/prosol/p	ulseassign/ti	iple	Selec	t											
						Ob	oserve			Decouple								
						13C	•		Nucl	leus 13C	•							
						Ok	oserve			Decouple								
Observe Comment: Default 1	30 obs 600									Decouple Comment: Defa	ult 130 dec 600							
A v																		
90 deg. Pulses HR Square Pulses HR Shape Pulses Others																		
			Observe									De	couple					
	Filename		∡ [°]	RFF[Hz]	Ali	PuW[µs]	Pw[W]	rel	#		Filename		∡ [°]	RFF[Hz]	Ali	PuW[µs]	Pw[W]	rel
selective excitation	Q5.1000		90.00	114.66	1.0	40000.00	0.00075724		0	selective excitation	Q5.1000		90.00	114.66	1.0	40000.00	0.00075724	
select. inversion/refocussinç	Q3_surbop.1		180.00	103.75	0.5	40000.00	0.00061998		1	select. inversion/refocussir	ç Q3_surbop.1]	180.00	103.75	0.5	40000.00	0.00061998	
bandsel. excitation	Q5.1000		90.00	1528.77	1.0	3000.00	0.13462		2	bandsel. excitation	Q5.1000		90.00	1528.77	1.0	3000.00	0.13462	
bandsel. inv./refoc.	Q3_surbop.1		180.00	1313.26	0.5	3160.00	0.099340		3	bandsel. inv./refoc.	Q3_surbop.1		180.00	1313.26	0.5	3160.00	0.099340	
adiabatic inversion	Crp60,0.5,20.1		180.00	9772.05	0.5	500.00	5.5004	Ð	4	adiabatic inversion	Crp60,0.5,20.1		180.00	9772.05	0.5	500.00	5.5004	E
adiabatic refocussing	Crp60comp.4		180.00	9772.05	0.5	2000.00	5.5004	E	5	adiabatic refocussing	Crp60comp.4		180.00	9772.05	0.5	2000.00	5.5004	
Cali/CO 90°	Q5_sebop.1		90.00	15092.00	1.0	350.00	13.119	E	6	Cali/CO 90°	Q5_sebop.1		90.00	15092.00	1.0	350.00	13.119	E
Cali/CO 90° timerev.	Q5tr_sebop.1		90.00	15092.00	0.0	350.00	13.119		7	Cali/CO 90° timerev.	Q5tr_sebop.1		90.00	15092.00	0.0	350.00	13.119	E
Cali/CO 180°	Q3_surbop.1		180.00	15370.00	0.5	270.00	13.607	E	8	Cali/CO 180°	Q3_surbop.1		180.00	15370.00	0.5	270.00	13.607	E
Calpha sel. 90°	Q5.1000		90.00	3057.55	1.0	1500.00	0.53848	E	9	Calpha sel. 90°	Q5.1000		90.00	3057.55	1.0	1500.00	0.53848	Ð
Calpha sel. 90° timerev.	Q5tr.1000		90.00	3057.55	0.0	1500.00	0.53848	E	10	Calpha sel. 90° timerev.	Q5tr.1000		90.00	3057.55	0.0	1500.00	0.53848	E
	1	1							12	adiabatic decoupling	Crp42.1.5.20.2	11	180.00	3656.37	0.5	1500.00	0.77006	B
		1						F	13	adiab, decoupling (bilev pa	Crp42.0.75.20.2	1	180.00	5170.88	0.5	750.00	1.5401	
x-filter (adiabatic 180)	Crp60 xfilt 2	11	180.00	5253.49	0.5	1730.00	1.5897	In	19	x-filter (adiabatic 180)	Crp60 xfilt 2	1	180.00	5253.49	0.5	1730.00	1.5897	
A mon (additionate 100)	- shoo mure		100.00	0200.40	0.0	1,00,00	1.0007		ر مد ا	leu neuer adiabatis dasau	Cro20.2.5.25.4	1	100.00	2100.62	0.5	2500.00	0.07060	
	1								34	low power adiabatic decou	Crp38,2.5,25.4	1	180.00	2199.62	0.5	2500.00	0.27869	
									35	low power adiab. decouplin	ç Crp38,1.25,25.4		180.00	3110.73	0.5	1250.00	0.55737	

;\$COMMENT=

Shaped pulses in pulse sequences and prosol table edprosol **Prosol relation** View <u>H</u>elp Edit File Help Saved Observe and Saved Decouple Prosol F Filter by file names 🔻 enter any string, *, ? Exclude: Z81999 0001 PA QXI 600S3 H-C/N/F-D-05 Z Select Probe: Class = Dim = Show Recommended Pulse Assign File: /opt/topspin4.2.0.b.7/exp/stan/nmr/lists/prosol/pulseassign/triple

Observe

Observe

RFF[Hz]

•

Ali

PuW[µs]

1H

Observe

∡ [°]

Others

HR Shape Pulses

Filename

prosol relations=<triple> Source Directory = /opt/topspin4.2.0.b.7/exp/stan/nmr/lists/prosol/pulseassign Clear Select #include <Avance.incl> SubType = SubTypeB = Reset Filters Type = ~ ∇ 1H Nucleus biosolCHN biosolHNC biosolNHC biosolXH default d16 pl0:f1 Decouple Co solids_cramps solids default lcnmr solids cp solids ICON solids mqmas solids stmas triple triple c triple na (pl2:spl ph2:r):fl triple2 Update.info 4u Pw[W]

Set selected item in editor

X <u>C</u>lose

selective excitation	Gausl_270.1000		270.00	22.78	1.0	80000.00	2.9886e	<u> </u>	/			_					d 7
selective refocussing	Gausl_180r.1000		180.00	15.19	0.5	80000.00	1.3282e-0	6	1 5	select. inve	ersion/refocussinc	Gausl_180)r.1000	18	0.00		
bandsel. excitation	Q5.1000		90.00	458.63	1.0	10000.00	0.001211	L6 🗋	2 k	bandsel. e	xcitation	Q5.1000		9	0.00		
bandsel. inv./refoc.	Q3.1000		180.00	330.08	0.5	10000.00	0.000627	56 🗋	зk	bandsel. ir	iv./refoc.	Q3.1000		18	0.00		
off-resonance presat. (powe	Squa100.1000		90.00	2.50	0.5	100000.00	3.6000e-0	08 🖹	4								
90° flip back (H2O)	Sinc1.1000		90.00	424.52	0.5	1000.00	0.001038	31 🖹	5 9	90° flip ba	ck (H20)	Sincl.1000)	9	0.00		
2nd 90° flip back (H2O)	Sincl.1000		90.00	106.13	0.5	4000.00	6.4878e-	Edit P	Proso	ol Pulse	Assian: #5						
90° WET	Sincl.1000]	90.00	21.23	1.0	20000.00	2.5951e-		4-2		edprosol		Factor		chan	Comment	
120° NH region	Pc9_4_120.1000]	120.00	1111.08	1.0	2400.00	0.00711	eu	19		euprosor		ractor		chan	comment	
180° NH region I	Rsnob.1000		180.00	2924.72	0.5	800.00	0.0492	P[11]		=	SHPW[5]	*	1.0		1	# flip-back pulse, F1, 1H	
						·		P[12]		=	SHPW[5]	*	2.0		1	# 180 deg sel. F1, 1H (exc. sc	ul)
								SH[1]		=	SH[5]	*	1.0		1	# flip-back pulse, F1, 1H	
																Save	<u>C</u> lose

32

Observe Comment: Default 1H obs 600

HR Square Pulses

90 deg. Pulses

<u>F</u>ile

Shaped pulses in pulse sequences and explicit programming

Pulses and power levels are coming from prosol

SFO1 [MHz]	600.1328206	
01 [Hz, ppm]	2820.61	4.700
NUC1	1H Edit	
Pl [µsec]	10.840	
p2 [µsec]	21.68	
P12 [µsec]	2000.000	
PLW0 [W, dB]	0	1000.00
PLW1 [W, dB]	9.7724	-9.90
SPNAM 1	Sincl.1000	E
SPOAL1	0.500	
SPOFFS1 [Hz]	0	
SPW1 [W, -dBW]	0.0033111	24.80
▲ Gradient channe	I	

GPNAM 1	SMSQ10.100		E
GPZ1 [%]	31.00		
GPNAM 2	SMSQ10.100		E
GPZ2 [%]	11.00		
P16 [µsec]	1000.000		

Pulses, gradients, power level calculations are explicitly programmed

SFO1 [MHz]	600.1328206		17	
01 [Hz, ppm]	2820.61		18	<pre>#include <avance.incl></avance.incl></pre>
NUC1	1Н [Edit	19	<pre>#include <grad.incl></grad.incl></pre>
Pl [µsec]	10.840		20	<pre>#include <delay.incl></delay.incl></pre>
p2 [µsec]	21.68		22	
pl2 [µsec]	2000.00		23	"p2=p1*2"
PLW1 [W, dB]	9.7724		24	"p12=2m"
spnaml	Sincl.1000		25	1
spoal1	0.5000000		27	"spnaml='Sincl.1000'"
spoffsl [Hz]	0		28	"spoall=0.5"
spwl [W, -dBW]	0.0033111		29	"spotts1=0" "spwl-plwl*pow(pl*180/(pl2*90*integfacl) 2)"
INTEGFAC1	0.5889000		31	spwi-ptwi powipi 1007 (piz-ob-integraci), z/
			32	"pl6=1m"
 Gradient channe 	91		33	"gpnaml='SMSQ10.100'"
gpnaml	SMSQ10.100		34	"gpnam2='SMSQ10.100'"
anz] [04]	21.00		35	"gpz1=31"
gbzī [‰]	51.00		36	"gpz2=11"
gpnam2	SMSQ10.100		37	
gpz2 [%]	11.00		38	"d12=20u"
p16 [µsec]	1000.00		39	"TAU=de+p1*2/3.1416+50u"
			40	

Shaped pulses in pulse sequences and wavemaker

- WaveMaker is a software for pulse shaping that is based on waveform definitions within the pulse programs.
- This avoids any need to modify the PROSOL tables when new or non-standard shaped pulses and decoupling or mixing waveforms are required.
- It also adds flexibility and improves portability of many standard and user developed experiments and pulse programs.
- Porting the WaveMaker based pulse programs to NMR systems of different field strength is straightforward and typically requires no further adjustments and PROSOL updates.

Applications

Criteria for the selection of a shaped pulse

1. Selectivity

- a. the region of interest should be irradiated as selectively as possible / as broad as possible
- b. the excitation profile should be rectangular and flat on top (uniform excitation)
- c. negligible excitation outside or in certain regions outside: HNCA, refocus CO; zero excitation of water
- 2. Length & Power
 - a. the pulse should be as short as possible as relaxation and J-evolution take place during shaped pulses
 - b. lowest possible integral power or peak power

3. Phase

- a. the pulse should give pure phase within the region of interest
- b. phase response should be uniform (self-refocussing)

4. Versatility

- a. ideally one pulse would be suitable for all kind of rotations
- b. 90-exitation ($M_z \rightarrow M_{xy}$), 180-inversion ($M_z \rightarrow M_{-z}$), 180-refocussing ($M_{xy} \rightarrow M_{-x-y}$) or other rotations

Applications: selective excitation

Applications: semi-selective SOFAST-HMQC

NH-selective shaped pulses for BEST/Sofast NMR Experiments:

Adiabatic pulses

Adiabatic pulses in ¹³C DEPT experiments 2msec Crp60comp.4 ¹³C dept45/90/135 deptsp45/90/135/q – with adiabatic refocusing ¹H refocussing pulse 15 10 deptsp135 - 6 dept135 - 6 150 100 50 [ppm]

Adiabatic pulses in ¹³C HSQC experiments

- hsqcetgpsp with adiabatic inversion only faster relaxing molecules
- hsqcetgpsp.2 with adiabatic inversion and refocusing mind the relaxation

¹³C pulse bandwidth

shaped pulse: rectangular

simulation

Adiabatic pulses: ¹H-¹³C HSQC

Adiabatic pulses: Inversion (p14) = 0.5 ms Refocusing (p24) = 2.0 ms

Hard 180 Pulse: 16 us

Adiabatic pulses: multiplicity edited ¹H-¹³C HSQC

Usage of J compensated matched sweep adiabatic pulses

Matched sweep adiabatic pulses

Typical small molecule: ¹J_{CH}: 120-250Hz protonated ¹³C chemical shift: 10-195ppm

From: Boyer, R.D. et al, J. Mag. Reson.165 (2003) 253-259

Matched sweep adiabatic pulses

Adiabatic pulses: multiplicity edited ¹H-¹³C HSQC

No adiabatic 13C pulses

(p14:sp3 ph6):f2 adiabatic inversion - Crp60,0.5,20.1
(p24:sp7 ph1):f2 adiabatic refocusing - Crp60comp.4
(p31:sp18 ph1):f2 matched sweep adiabatic - Crp60_xfilt.2
bi_p5m4sp_4sp.2 bilevel adiabatic decoupling - Crp42,1.5,20.2

Typical pulses for 600MHz

Adiabatic pulses: multiplicity edited ¹H-¹³C HSQC

HSQC pulse sequences

HSQC pulse seq	Feature	Comments
ed	edited	
si	sensitivity improvement	Line shapes might be distorted
		Longer pulse sequence, for proteins may give opposite result
lr	long range	
jc	j-coupling measurement	
f3	15N	
ct	constant time	no ¹ J _{CC} coupling present, sharper lines, for labeled samples
pr wt	Water suppression	
di, ml, no, ro	TOCSY, NOESY	
_bbhd	Broad-band homodec	
_bshd	Band-selective homodec	

HSQC pulse sequences

hsqcetgpsisp		Adiabatic 180-degree inversion pulses	
nsqcetgpsisp.z		All 180-degree puises are adiabatic	
hsqcetgpsisp2 hsqcetgpsisp2.2 hsqcetgpsisp2.3	With gradients in back INEPT	Adiabatic 180-degree inversion pulses All 180-degree pulses are adiabatic + COSY artefacts suppression	
hsqcedetgpsisp2 hsqcedetgpsisp2.2 hsqcedetgpsisp2.3 hsqcedetgpsisp2.4*	With gradients in back INEPT Edited	Adiabatic 180-degree inversion pulses All 180-degree pulses are adiabatic Matched sweep adiabatic pulses + COSY artefacts suppression	
hsqcetgpsp hsqcetgpsp.2 hsqcetgpsp.3	No SI, with optional F3 decoupling Proteins	Adiabatic 180-degree inversion pulses All 180-degree pulses are adiabatic, refocusing using composite Crp Refocusing using pair of Crp pulses	

* Small molecules – cleanest spectrum but longer pulse sequence duration – mind the relaxations

Decoupling

HSQC Parameter Sets and decoupling programs

Parameter Sets: rpar					CPD Programs				
File Options Help		Source Direc	tory = /opt/topspin4.2.0.b	.7/exp/stan/nmr/par 🔹	File Options Help		Source Director	y = /opt/topspin4.2.0.b.7/ex	:p/stan/nmr/lists/cpd 🔹
Filter by file names HSQC*ADIA* Exclude: HI_T Class Any Dim Any SubType Any SubType Any SubType Any SubType Any SubType Any Reset Filters									
HSQCCTETGPSISP_ADIA	HSQCCTETGPSP_ADIA	HSQCDIEDETGPSISP.1_A	HSQCDIETGPSISP_ADIA	HSQCDIETGPSISP.2_ADIA	bi_p5m4sp_4pl	bi_p5m4sp_4sp	bi_p5m4sp_4sp_lp	bi_p5m4sp_4sp.2	bi_p5m4sp_4sp.2.p62
HSQCEDETGPSISP_ADIA	HSQCEDETGPSISP.2_ADIA	HSQCEDETGPSISP2_ADIA	HSQCEDETGPSISP2.2_ADIA	HSQCEDETGPSISP2.3_ADIA	bi_sp180pl.p63	mlevsp	mlevsp180	mlevsp180.p30	mlevsp180.p31
HSQCEDETGPSP_ADIA	HSQCEDETGPSP.3_ADIA	HSQCETGPNOSP_ADIA	HSQCETGPROSP_ADIA	HSQCETGPROSP.2_ADIA	p5m4sp180	p5m4sp180.2	p5m4sp180.p31	p5m4sp180.p61	p5m4sp180.p62
HSQCETGPSISP_ADIA	HSQCETGPSISP.2_ADIA	HSQCETGPSISP2_ADIA	HSQCETGPSISP2.2_ADIA	HSQCETGPSP_ADIA			Edi	t <u>S</u> et selected item	ín editor 🛛 🗙 <u>C</u> lose
HSQCETGPSP.2_ADIA	HSQCETGPSP.3_ADIA								
				Read X <u>C</u> lose					

Several standard parameter sets which employ adiabatic decoupling are available.

Recommended for spectrometers \geq 500MHz

For adiabatic decoupling pulse quality factor Q can be reduced from 5 to 2-3, which gives 2.2-4 dB lower power. Hence lower sample heating

Thank you!

Innovation with Integrity