

Unterdrückung von Lösungsmittelsignalen Christian Richter Goethe-University Frankfurt ric@nmr.uni-frankfurt.de

PPNMR2023, Berlin 21. & 22.03.2023 - Tutorial: Unterdrückung von Lösemittelsignalen - Christian Richter

Überblick

- Einleitung
- 1D-Wasserunterdrückungsexperimente vor dem Ausleseimpuls
- 1D-Wasserunterdrückungsexperimente nach dem Ausleseimpuls
- Weitere Optimierung
- Implementierung der Wasserunterdrückung in 2D-Sequenzen

Wasserunterdrückung -- Warum?

□ Signale, die sich mit Wassersignalen (+/- 3 ppm) überlappen, können nicht erkannt werden

□ Konzentrationsunterschiede:

110 M H₂O versus 0,5 mM Protein oder RNA \rightarrow Faktor 100.000

Dynamic Range Problem

Das Wasser trägt den größten Teil der Intensität des aufgezeichneten FIDs bei. Daher muss die Verstärkung des Empfängers reduziert werden, und das interessierende Signal kann nur unzureichend digitalisiert werden.

Radiation Damping -- Strahlungsdämpfung

Die starke Magnetisierung des Wassersignals induziert Ströme in der NMR-Spule, die Magnetfelder erzeugen, was zu einer Linienverbreiterung führt. Zheng & Price Progress in Nuclear Magnetic Resonance Spectroscopy 56 (2010) 267–288

PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter

Strahlungsdämpfung

Der durch die Strahlungsdämpfung (RD) induzierte Linienverbreiterungseffekt ist gegeben durch:

$$T_{\rm RD} = \frac{2}{\gamma \mu_0 \eta Q M_0},$$

- γ gyromagnetic ratio
- μ_0 magnetic permeability
- M₀ equilibrium magnetization
- η filling factor of the probe
- Q quality factor of the probe
- Die Strahlungsdämpfung nimmt zu

bei höherer Wasserkonzentration

- bei höherem Magnetfeld
- mit empfindlicheren Probenköpfen (CryoProbe)
- □ mit größeren Röhrchendurchmesser, z.B. 5mm versus 3mm Rohre

Zheng & Price Progress in Nuclear Magnetic Resonance Spectroscopy 56 (2010) 267–288

GOETHE UNIVERSIT

Unterdrückung von Lösungsmittelsignalen

Lösungs- mittelsignal- unterdrückung:	
	Beeinflusst nur das Lösungsmittel und nicht die Resonanzen von untersuchten Molekül
	Hat keinen Einfluss auf das Pulsprogramm
	ist einfach einzurichten
PPNMR	2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter
Gründe, warum	die Wasserunterdrückung versagen kann GOETH UNIVE FRANKFUR
Gründe, warum	die Wasserunterdrückung versagen kann GOETH UNIVE FRANKFUR
Gründe, warum Schlechter shim	die Wasserunterdrückung versagen kann GOETH UNIVE UNIVE FRAMEFUR → anderen Startshim einlesen, rsh xxx & topshim
Gründe, warum Schlechter shim Luftblasen besor	die Wasserunterdrückung versagen kann GOETH UNIVE → anderen Startshim einlesen, rsh xxx & topshim inders in Shigemi-Röhrchen
Gründe, warum Schlechter shim Luftblasen besor falsche Einstellur	die Wasserunterdrückung versagen kann GOETHUNVE → anderen Startshim einlesen, rsh xxx & topshim nders in Shigemi-Röhrchen ng der Protonenpulslänge oder Wasserfrequenz (O1, O1P)
Gründe, warum Schlechter shim Luftblasen besor falsche Einstellun	die Wasserunterdrückung versagen kann → anderen Startshim einlesen, rsh xxx & topshim nders in Shigemi-Röhrchen ng der Protonenpulslänge oder Wasserfrequenz (O1, O1P) g + Matching ist falsch justiert
Gründe, warum Schlechter shim Luftblasen besor falsche Einstellur ¹ H oder ² H Tunin falsche Einstellur	die Wasserunterdrückung versagen kann GOETH UNIVE → anderen Startshim einlesen, rsh xxx & topshim aders in Shigemi-Röhrchen ng der Protonenpulslänge oder Wasserfrequenz (O1, O1P) g + Matching ist falsch justiert ng des Lockparameters
Gründe, warum Schlechter shim Luftblasen besor falsche Einstellur ¹ H oder ² H Tunin falsche Einstellur minderwertige N	die Wasserunterdrückung versagen kann GOETH → anderen Startshim einlesen, rsh xxx & topshim nders in Shigemi-Röhrchen ng der Protonenpulslänge oder Wasserfrequenz (O1, O1P) g + Matching ist falsch justiert ng des Lockparameters MR-Röhrchen oder zu wenig Probenvolumen
Gründe, warum Schlechter shim Luftblasen besor falsche Einstellur ¹ H oder ² H Tunin falsche Einstellur minderwertige N Verunreinigung	die Wasserunterdrückung versagen kann GOETI → anderen Startshim einlesen, rsh xxx & topshim nders in Shigemi-Röhrchen ng der Protonenpulslänge oder Wasserfrequenz (O1, O1P) g + Matching ist falsch justiert ng des Lockparameters MR-Röhrchen oder zu wenig Probenvolumen

Akquisitionsparameter für den Wasserunterdrückungstest

	FRANKFURT AM MAIN					
 Testprobe: 2mM Sucrose mit 0.5mM DSS, 2mM in 10% D₂O / 90% H₂O (Z10246) Temperatur: 298K (kalibriert mit MeOH d4) Pulseprogramm: zgpr 	NMR TEST ACCEPTANCE *** System: AV NEO (950.05 MHz) *** TopSpin 4.1.4 Probe: 2158417 0002 CP2: 1TCl 5058 HCA1-0.6 2 XT *** Sample Depth: 21 mm Wingle: 2 MM Scoreve, 05 mm DOS2 and NM PD7 1H Hc2 Wingle: 2 MM Scoreve, 05 mm DOS2 and NM PD7 1H Hc2 Shim Correction 2 = 18, 22 = 0, PULPHOG = zgpc, Input_123 = 1, 01 optimized, OxFl = 1 Linewidth [achievedrated]: at 50 %; of DSS signal [10.4 Hc <= 80.0 Hc] <pre></pre>					
 Akquisitionszeit (Aq): 1s TD (¹H) = Abhängig vom Feld SW (¹H) = 12ppm Relaxationszeit: d1 = 5s NS = 8, DS = 4, cw Anregungsfeld: max. 50Hz 						
 Prozessierung: nur FT, keine window function, kein bcmod, automatic Basislinienkorrektur Si = 16K (wenn TD kleiner als 16k sonst 32k) Bestimmung von S/N: au-prog, suppcal 	5.42 5.40 5.38 ppm Scale: 0.01231 ppm:cm, 11.21 H2:cm 10 9 8 7 6 5 4 3 2 1 0 ppm					
PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdri	ückung von Lösemittelsignalen – Christian Richter 8					
Wasserunterdrückungstest	GOETHE UNIVERSITÄT FRANKFURT AM MAIN					
Testprobe: 2mM Sucrose mit 0.5mM DSS, 2mM NaN ₃ in 10% D ₂ O / 90% H ₂ O (Z10246)						
 Startshim: rsh xxx oder im letzten Sucrose-Datensatz: rsh acqu atma exact high und T+M von ²H Topshim 3d ordmax=5,5 und pulsecal 						
Image: suppcal X Image: Water suppr. : 18.9 / 37.9 Hz Resolution : 15%, Sino best : 750.8						
<u>OK</u> 5.40 ppm						
600MHz TCI Prodigy ¹ H/ ¹⁹ F [¹³ C, ¹⁵ N]	5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm					

Wasserunterdrückungstest

Für Kryoprobenköpfe gilt: es gibt ein Temperaturgradient in der Probe Dieser kann durch kleine Shim-Änderungen kompensiert werden □ Üblicherweise wird der z-Shim um +10 bis + 18 geändert

Wasserunterdrückungstest

Salzabhängigkeit von verschiedenen NMR-Röhrchen

Testprobe: 2mM Sucrose mit 0.5mM DSS, 2mM NaN₃ in 10% D₂O / 90% H₂O 298K am AV950 ausgestattet mit 5mm CryoProbe TCI ¹H[¹³C, ¹⁵N]

Tube	Salt	Water Hump [HZ]	Resolution [%]	S/N	Füllhöhe	¹ H-90° Puls
Shigemi	0	46 / 67	29	675 :1	280µl	9.3 µs
Shigemi	100mNaCl	62 / 120	29	424 :1	280µl	13.5 µs
Shigemi	200m NaCl	85 / 130	32	375 :1	280µl	16.3 µs
4mm tube	0	52 / 92	15	588 :1	360µl	8.6 µs
4mm tube	100mNaCl	40 / 78	19	414 :1	360µl	10.7 µs
4mm tube	200m NaCl	116 / 239	27	363 :1	360µl	12.3 µs
shape tube	0	58 / 110	17	542 :1	330µl	8,3 µs
shape tube	100mNaCl	55 / 88	19	422 :1	330µl	9.5 µs
shape tube	200m NaCl	54 / 107	15	472 :1	330µl	10,5 µs

Frank Löhr

GOETHE

PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter

Füllhöhe und Wasserunterdrückung

Setup Off-Resonanz Vorsättigung: zgps

composite presaturation + gradient **zgcpgppr**

WET Mehrfache Lösungsmittelunterdrückung wet

▲loop, I6 off-reson

1D presat NOESY +gradient noesygppr1d

1D NOESY: pp noesygppr1d

 T_1 -Diskriminierung: Die T_1 der zu messenden Verbindung ist um ein

Vielfaches kleiner als die des Wassers.

© flexibel & einfach einzurichten

© Empfohlene Methode für Metabolomik Projekte

Signale um das Wasser werden ebenfalls abgeschwächt

© Dämpfung/Unterdrückung von Resonanzen durch chemischen

Austausch

more information: Ryan T Mckay Concepts in Magnetic Resonance Part A 38A(5) 197–220, 2011

Parameter:

d1 = 2s ds = 4

pulprog = noesygppr1d

d8 = 10 ms (NOE Mischzeit)

pl9 = 40-50dB (berechnet in edprosol)

ns = 8 (minimum)

BMRZ

PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter

Protein L11 (0.5mM) 200mM KCl, 20m phosphate pH 5.4

at 600 MHz

BMRZ

Sättigungsbasierte Methoden

Vorteile

flexibel & einfach einzurichten

Nachteil

Langsam mit dem Lösungsmittel austauschende Protonen können ebenfalls gesättigt werden. Abhängig von

- ■pKa
- ■pH
- Temperatur
- Pufferkonzentration
- Alle Spins mit Resonanzen nahe der Lösungsmittelfrequenz werden ebenfalls gesättigt.

Einfluss des gepulsten Feldgradienten (PFG)

Übersicht der 1D-Wasserunterdrückungsexperimente nach dem Auslesepuls

10 9

5

3 2 1 ppm

ppm

1

H₂C

5

2

3

10

Excitation sculpting: zgesgp

pulse program code:

p16:gp1

1

GOETHE UNIVERSITÄT

d16 pi0:f1 (p12:sp1 ph2:r):f1 4u d12 pl1:f1 p2 ph3	Gradienterholungszeit, Setzt die Leistung des F1 Ka Selektiver 180° Puls auf Wasser: spnam1=Sinc.1000 oder Square oder G p12=2ms, sp1 Berechnet aus P1 Optimierung von sp1 in gs Modus möglic Setzt die Leistung vom F1 Kanal zurück zu plw1 (Ma nicht selektiver 180° Puls	anal auf 0W auss ch ax. zulässige Leistung) $H = \frac{d1}{1 pl2} 2$ $G_z = \frac{sp1}{G_1 G_2 G_2}$
4u p16:gp1 d16 TAU	Refokusierungs Gradient	 Signale in Wassernähe können beobachtet werden gleichmäßige Anregung
p16:gp2	Start des 2. Gradient Echo, p16=1ms, gpnam2= SMSQ10.100, gpz2=11%	© Mehrfache Lösemittelunterdrückung möglich
d16 pl0:f1 (p12:sp1 ph4:r):f1 4u	Selektiver 180° Pulse auf Wasser	© sehr effizient (>10 ⁴)
d12 pl1:f1 <mark>p2 ph5</mark> 4u	nicht selektiver 180° Pulse	 Resonanzen, die austauschen, sind beobachtbar n(HH) entwickelt sich
p16:gp2	Refokusierungs Gradient	⊗ Zeitintervall von 4 - 12 ms nach Anregungspuls
	4u 4u d12 pl1:f1 p2 ph3 4u p16:gp1 d16 TAU p16:gp2 d16 pl0:f1 (p12:sp1 ph4:r):f1 4u d12 pl1:f1 p2 ph5 4u p16:gp2	d16 pl0:f1Gradienterholungszeit, Setzt die Leistung des F1 Ka(p12:sp1 ph2:r):f1Selektiver 180° Puls auf Wasser:•spnam1=Sinc.1000 oder Square oder G•p12=2ms, sp1 Berechnet aus P1•Optimierung von sp1 in gs Modus mögli4uoptimierung von sp1 in gs Modus mögli4usetzt die Leistung vom F1 Kanal zurück zu plw1 (Map2 ph3nicht selektiver 180° Puls4up16:gp1p16:gp2Start des 2. Gradient Echo, p16=1ms, gpnam2= SMSQ10.100, gpz2=11%d16 pl0:f1Selektiver 180° Pulse auf Wasser4unicht selektiver 180° Pulse4up16:gp2p2 ph5nicht selektiver 180° Pulse4up16:gp2p16:gp2Refokusierungs Gradient

PPNMR2023, Berlin 21. & 22.03.2023 - Tutorial: Unterdrückung von Lösemittelsignalen - Christian Richter

Luftblasen und Wasserunterdrückung

Excitation sculpting: Pulsprogrammoptimierung 1

Excitation sculpting: Pulsprogrammoptimierung 2

Empfohlene Methode für RNA und DNA: Jump-Return-Echo

PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter

GOETHE.

Wasserunterdrückungsmethoden in 2D pp

BMRZ

PPNMR2023, Berlin 21. & 22.03.2023 – Tutorial: Unterdrückung von Lösemittelsignalen – Christian Richter

2D TOCSY mit verschiedenen Wasserunterdrückungsmethoden

RNA -- 2D NOESY

¹⁵N/ ¹³C markiertes Ubiquitin, 600 MHz, 298K

GOETHE 🧱

Optimierung WATERGATE ¹⁵N-HSQC, selektiver Puls

Optimierung WATERGATE ¹⁵N-HSQC, Leistung + phcor

SOFAST ¹⁵N-HMQC / BEST ¹⁵N-HSQC / BEST ¹⁵N-TROSY GOETHE

BEST ¹⁵N-TROSY

Wasserunterdrückung im 3D

¹⁵N/¹³C markierte 22mer RNA bei 600MHz

PPNMR2023, Berlin 21. & 22.03.2023 - Tutorial: Unterdrückung von Lösemittelsignalen - Christian Richter

Wasserunterdrückung im 3D

Wasserunterdrückung im 3D

¹⁵N/¹³C markierte 22mer RNA bei 600MHz

PPNMR2023, Berlin 21. & 22.03.2023 - Tutorial: Unterdrückung von Lösemittelsignalen - Christian Richter

GOETHE

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN